Chapter 9

XQuery

Peter Wood (BBK)

XML Data Management

Motivation

@ Now that we have XPath, what do we need XQuery for?

@ XPath was designed for addressing parts of existing XML
documents

@ XPath cannot

» create new XML nodes

» perform joins between parts of a document (or many documents)
» re-order the output it produces
>

@ Furthermore, XPath

» has a very simple type system
» can be hard to read and understand (due to its conciseness)

Peter Wood (BBK) XML Data Management 245/378

Data Model

@ XQuery closely follows the XML Schema data model
@ The most general data type is an item
@ An item is either a (single) node or an atomic value

Peter Wood (BBK) XML Data Management

246 /378

Data Model (2)

@ XQuery works on sequences, which are series of items
@ In XQuery every value is a sequence

» There is no distinction between a single item and a sequence of
length one

@ Sequences can only contain items; they cannot contain other
sequences

Peter Wood (BBK) XML Data Management 247 /378

Document Representation

@ Every document is represented as a tree of nodes

@ Every node has a unique node identity that distinguishes it from
other nodes (independent of any ID attributes)

@ The first node in any document is the document node (which
contains the whole document)

@ The order in which the nodes occur in an XML document is called
the document order

Peter Wood (BBK) XML Data Management 248 /378

Document Representation (2)

@ Attributes are not considered children of an element

» They occur after their element and before its first child
» The relative order within the attributes of an element is
implementation-dependent

Peter Wood (BBK) XML Data Management 249/378

Query Language

@ We are now going to look at the query language itself

Basics

Creating nodes/documents
FLWOR expressions
Advanced topics

vV vyVvYy

Peter Wood (BBK) XML Data Management 250/378

Comments

@ XQuery uses “smileys” to begin and end comments:
(: This is a comment :)

@ These are comments found in a query (to comment the query)
» Not to be confused with comments in XML documents

Peter Wood (BBK) XML Data Management 251/378

Literals

@ XQuery supports numeric and string literals
@ There are three kinds of numeric literals

» Integers (e.g. 3)
» Decimals (e.g. -1.23)
» Doubles (e.g. 1.2e5)

@ String literals are delimited by quotation marks or apostrophes

» “astring”
» 'a string’
» 'This is a “string”

Peter Wood (BBK) XML Data Management 252 /378

Input Functions

@ XQuery uses input functions to identify the data to be queried

@ There are two different input functions, each taking a single
argument

» doc()

* Returns an entire document (i.e. the document node)

* Document is identified by a Universal Resource Identifier (URI)
» collection()

* Returns any sequence of nodes that is associated with a URI

* How the sequence is identified is implementation-dependant

* For example, eXist allows a database administrator to define
collections, each containing a number of documents

Peter Wood (BBK) XML Data Management 253/378

Sample Data

@ In order to illustrate XQuery queries, we use a sample data file
books.xml which is based on bibliography data

<bib>

<book year=’1994’>
<title>TCP/IP Illustrated</title>
<author>
<last>Stevens</last>
<first>W.</first>
</author>
<publisher>Addison Wesley</publisher>
<price>65.95</price>
</book>

Peter Wood (BBK) XML Data Management 254 /378

Sample Data (cont'd)

<book year=’19927>
<title>
Advanced Programming in the UNIX environment
</title>
<author>
<last>Stevens</last>
<first>W.</first>
</author>
<publisher>Addison Wesley</publisher>
<price>65.95</price>
</book>

Peter Wood (BBK) XML Data Management

255/378

Sample Data (cont'd)

<book year=’20007>
<title>Data on the Web</title>
<author>
<last>Abiteboul</last> <first>Serge</first>
</author>
<author>
<last>Buneman</last> <first>Peter</first>
</author>
<author>
<last>Suciu</last> <first>Dan</first>
</author>
<publisher>Morgan Kaufmann</publisher>
<price>39.95</price>
</book>

Peter Wood (BBK) XML Data Management

256 /378

Sample Data (cont'd)

<book year=’19997>
<title>
The Economics of Technology and Content for Digital TV
</title>
<editor>
<last>Gerbarg</last>
<first>Darcy</first>
<affiliation>CITI</affiliation>
</editor>
<publisher>Kluwer Academic</publisher>
<price>129.95</price>
</book>

</bib>

Peter Wood (BBK) XML Data Management 257 /378

Input Functions (2)

@ doc("books.xml") returns the entire document

@ A run-time error is raised if the doc function is unable to locate the
document

Peter Wood (BBK) XML Data Management 258/378

Input Functions (3)

@ XQuery uses XPath to locate nodes in XML data

@ An XPath expression can be appended to a doc (or collection)
function to select specific nodes

@ For example, doc ("books.xml")//book
returns all book nodes of books . xml

Peter Wood (BBK) XML Data Management 259/378

Creating Nodes

@ So far, XQuery does not look much more powerful than XPath
@ We only located nodes in XML documents
@ Now we take a look at how to create nodes

@ Note that this creates nodes in the output of a query; it does not
update the document being queried

Peter Wood (BBK) XML Data Management 260/378

Creating Nodes (2)

@ Elements, attributes, text nodes, processing instructions, and
comment nodes can all be created using the same syntax as XML

@ The following element constructor creates a book element:

<book year=’1977’>
<title>Harold and the Purple Crayon</title>
<author>
<last>Johnson</last>
<first>Crockett</first>
</author>
<publisher>
Harper Collins Juvenile Books
</publisher>
<price>14.95</price>
</book>

Peter Wood (BBK) XML Data Management 261/378

Creating Nodes (3)

@ Document nodes do not have an explicit syntax in XML
@ XQuery provides a special document node constructor
@ The query

document {3}

creates an empty document node

Peter Wood (BBK) XML Data Management 262 /378

Creating Nodes (4)

@ Document node constructor can be combined with other
constructors to create entire documents

document {
<?7xml-stylesheet type=’text/xsl’ href=’trans.xslt’?>
<!-- T love this book -->
<book year=’1977’>
<title>Harold and the Purple Crayon</title>
<author>
<last>Johnson</last>
<first>Crockett</first>
</author>
<publisher>
Harper Collins Juvenile Books
</publisher>
<price>14.95</price>
</book>
}

Peter Wood (BBK) XML Data Management

263 /378

Creating Nodes (5)

@ Constructors can be combined with other XQuery expressions to
generate content dynamically

@ In element constructors, curly braces { } delimit enclosed
expressions which are evaluated to create content

@ Enclosed expressions may occur in the content of an element or
the value of an attribute

Peter Wood (BBK) XML Data Management 264 /378

Creating Nodes (6)

@ This query creates a list of book titles from books . xm1l

<titles count =
’{ count(doc("books.xml")//title) }’>

doc("books.xml")//title

}
</titles>

@ The resultis:

<titles count="4">
<title>TCP/IP Illustrated</title>
<title>Advanced Programming ...</title>
<title>Data on the Web</title>
<title>The Economics of ...</title>
</titles>

Peter Wood (BBK) XML Data Management

265/378

Whitespace

@ Implementations may discard boundary whitespace (whitespace
between tags with no intervening non-whitespace)

@ This whitespace can be preserved by an xmlspace declaration in
the prolog of a query

@ The prolog of a query is an optional section setting up the
compile-time context for the rest of the query

Peter Wood (BBK) XML Data Management 266 /378

Whitespace (2)

@ The following query declares that all whitespace in element
constructors must be preserved (which will output the element in
exactly the same format)

declare xmlspace preserve;

<author>
<last>Stevens</last>
<first>W.</first>
</author>
@ Omitting this declaration (or setting the mode to strip) will give:
<author><last>Stevens</last><first>W.</first></author>

Peter Wood (BBK) XML Data Management 267 /378

Combining and Restructuring

@ The expressiveness of XQuery goes beyond just creating nodes

@ Information from one or more sources can be combined and
restructured to create new results

@ We are going to have a look at the most important expressions
and functions

Peter Wood (BBK) XML Data Management 268/378

FLWOR

@ FLWOR expressions (pronounced “flower”) are one of the most
powerful and common expressions in XQuery

@ Syntactically, they show similarity to the select-from-where
statements in SQL

@ However, FLWOR expressions do not operate on tables, rows, and
columns

Peter Wood (BBK) XML Data Management 269/378

FLWOR (2)

@ The name FLWOR is an acronym standing for the first letter of the
clauses that may appear
» For
> Let
» Where
» Order by
» Return

Peter Wood (BBK) XML Data Management 270/378

FLWOR (3)

@ The acronym FLWOR roughly follows the order in which the
clauses occur

@ A FLWOR expression

starts with one or more for or let clauses (in any order)
followed by an optional where clause,

an optional order by clause,

and a required return clause

v v VvYy

Peter Wood (BBK) XML Data Management 271/378

For and Let Clauses

@ Every clause in a FLWOR expression is defined in terms of tuples
@ The for and let clauses create these tuples

@ Therefore, every FLWOR expression must have at least one for
or let clause

@ We will start with artificial-looking queries to illustrate the inner
workings of for and let clauses

Peter Wood (BBK) XML Data Management 272/378

For and Let Clauses (2)

@ The following query creates an element named tuple in its return
clause

for $i in (1, 2, 3)
return
<tuple><i> { $i } </i></tuple>

@ We bind the variable $i to the expression (1, 2, 3), which
constructs a sequence of integers

@ The above query results in:

<tuple><i>1</i></tuple>
<tuple><i>2</i></tuple>
<tuple><i>3</i></tuple>

(a for clause preserves order when it creates tuples)

Peter Wood (BBK) XML Data Management 273 /378

For and Let Clauses (3)

@ A let clause binds a variable to the entire result of an expression
@ If there are no for clauses, then a single tuple is created

let $1i := (1, 2, 3)
return
<tuple><i> { $i } </i></tuple>

results in:

<tuple><i>1 2 3</i></tuple>

Peter Wood (BBK) XML Data Management 274 /378

For and Let Clauses (4)

@ Variable bindings of 1et clauses are added to the tuples
generated by for clauses

for $i in (1, 2, 3)
let $j := (’a’, ’b’, ’c?)
return
<tuple><i>{ $i }</i><j>{ $j }</j></tuple>
results in:
<tuple><i>1</i><j>abc</j></tuple>

<tuple><i>2</i><j>abc</j></tuple>
<tuple><i>3</i><j>abc</j></tuple>

Peter Wood (BBK) XML Data Management 275/378

For and Let Clauses (5)

@ for and let clauses can be bound to any XQuery expression
@ Let us do a more realistic example

@ List the title of each book in books.xml together with the numbers
of authors:

for $b in doc("books.xml")//book
let $a := $b/author
return
<book> { $b/title,
<count> { count($a) } </count> }
</book>

Peter Wood (BBK) XML Data Management 276 /378

For and Let Clauses (6)

@ This results in:

<book>
<title>TCP/IP Illustrated</title>
<count>1</count>

</book>

<book>
<title>Advanced Programming ...</title>
<count>1</count>

</book>

<book>
<title>Data on the Web</title>
<count>3</count>

</book>

<book>
<title>The Economics of Technology
<count>0</count>

</book>

Peter Wood (BBK) XML Data Management

...</title>

277378

Where Clauses

@ A where clause eliminates tuples that do not satisfy a particular
condition

@ A return clause is only evaluated for tuples that “survive” the
where clause

@ The following query returns only books whose prices are less than
50.00:

for $b in doc("books.xml")//book
where $b/price < 50.00
return $b/title

returns

<title>Data on the Web</title>

Peter Wood (BBK) XML Data Management 278 /378

Order By Clauses

@ An order by clause sorts the tuples before the return clause is
evaluated

@ If there is no order by clause, then the results are returned in
document order

@ The following example lists the titles of books in alphabetical
order:

for $t in doc("books.xml")//title
order by $t
return $t

@ An order spec may also specify whether to sort in ascending or
descending order (using ascending Or descending)

Peter Wood (BBK) XML Data Management 279/378

Return Clauses

@ Any XQuery expression may occur in a return clause
@ Element constructors are very common in return clauses

@ The following query represents an author’s name as a string in a
single element

for $a in doc("books.xml")//author
return
<author> { string($a/first), " ",
string($a/last) } </author>

results in

<author>W. Stevens</author>
<author>W. Stevens</author>
<author>Serge Abiteboul</author>
<author>Peter Buneman</author>
<author>Dan Suciu</author>

Peter Wood (BBK) XML Data Management 280/378

Return Clauses (2)

@ The following query adds another level to the hierarchy:

for $a in doc("books.xml")//author
return
<author>
<name> { $a/first, $a/last } </name>
</author>

results in

<author>
<name>
<first>W.</first>
<last>Stevens</last>
</name>
</author>

Peter Wood (BBK) XML Data Management 281/378

Operators

@ The operators shown in the queries so far have not been covered
yet

@ XQuery has three different kinds of operators

» Arithmetic operators
» Comparison operators
» Sequence operators

Peter Wood (BBK) XML Data Management 282/378

Arithmetic Operators

@ XQuery supports the arithmetic operators +, -, *, div, idiv, and
mod

@ The idiv and mod operators require integer arguments, returning
the quotient and the remainder, respectively

@ If an operand is a node, atomization is applied (casting the content
to an atomic type)

@ If an operand is an empty sequence, the result is an empty
sequence

@ If an operand is untyped, it is cast to a double (raising an error if
the cast fails)

Peter Wood (BBK) XML Data Management 283/378

Comparison Operators

@ XQuery has different sets of comparison operators: value
comparisons, general comparisons, node comparisons, and order
comparisons

@ Value comparison operators compare atomic values:

eq | equals

ne | not equals

It | lessthan

le | less than or equal to

gt | greater than

ge | greater than or equal to

Peter Wood (BBK) XML Data Management 284 /378

General Comparisons

@ The following query raises an error

for $b in doc("books.xml")//book
where $b/author/last eq ’Stevens’
return $b/title

because we try to compare several author names to ’Stevens’
(books may have more than one author)
@ We need a general comparison operator for this to work

@ A general comparison returns true if any value in a sequence of
atomic values matches

Peter Wood (BBK) XML Data Management 285/378

General Comparisons (2)

@ The following table shows the corresponding general comparison
operator for each value comparison operator

value comparison

general comparison

€q
ne
It
le
ot
ge

<

Peter Wood (BBK)

XML Data Management

286 /378

Built-in Functions

@ XQuery also offers a set of built-in functions and operators
@ We focus only on the most common ones here

@ SQL users will be familiar with the min (), max (), count (), sum(),
and avg() functions
@ Other familiar functions include
» Numeric functions like round (), floor(), and ceiling()
» String functions like concat (), string-length(), substring()

upper-case(), lower-case()
» Cast functions for the various atomic types

Peter Wood (BBK) XML Data Management 287/378

User-Defined Functions

@ When a query becomes large and complex, it becomes easier to

understand if it is split up into functions

@ For example, if the titles of books written by a given author are
needed in different places of a query, a function could be defined

(in the prolog):

define function books-by-author($last, $first)

as element()*

{

for $b in doc("books.xml")//book

for $a in $b/author
where $a/first = $first
and $a/last = $last
return $b/title

Peter Wood (BBK) XML Data Management

288 /378

Library Modules

@ Functions can be put into library modules, which can be imported
by any query

@ Every module in XQuery is either a main module (which contains
a query body) or a library module (which has no query body)

@ A library module begins with a module declaration which provides
a URI for identification:

module "http://example.com/xq/book"
define function ...

define function ...

Peter Wood (BBK) XML Data Management 289/378

Library Modules (2)

@ Any module can import another module using @ import module
declaration

@ This declaration has to specify a URI and may specify a location
where the module can be found

import module "http://example.com/xq/book"
at "file:///home/xquery/..."

Peter Wood (BBK) XML Data Management 290/378

Positional Variables

@ The for clause supports positional variables

@ This identifies the position of a given item in the sequence
generated by an expression

@ The following query returns the titles of books with an attribute
that numbers the books:

for $t at $i in doc("books.xml")//title
return
<title pos=’ { $i } >
{ string($t) }
</title>

Peter Wood (BBK) XML Data Management 291/378

Positional Variables (2)

@ The output of this query looks like this:

<title pos="1">

TCP/IP Illustrated
</title>
<title pos="2">

Advanced Programming in ...
</title>
<title pos="3">

Data on the Web
</title>
<title pos="4">

The Economics of Technology ...
</title>

Peter Wood (BBK) XML Data Management 292/378

Eliminating Duplicates

@ Data (or intermediate query results) often contain duplicate values
@ The following query returns one of the authors twice

doc("books.xml")//author/last
which outputs

<last>Stevens</last>
<last>Stevens</last>
<last>Abiteboul</last>
<last>Buneman</last>
<last>Suciu</last>

Peter Wood (BBK) XML Data Management 293/378

Eliminating Duplicates (2)

@ The distinct-values() function is used to remove duplicate
values

@ It extracts values of a sequence of nodes and creates a sequence
of unique values

@ Example:
distinct-values(doc("books.xml")//author/last)
which outputs

Stevens Abiteboul Buneman Suciu

Peter Wood (BBK) XML Data Management 294 /378

Combining Data Sources

@ A query may bind multiple variables in a for clause to combine
data from different expressions

@ Suppose we have a file named reviews.xml that contains book
reviews:

<reviews>
<entry>
<title>Data on the Web</title>
<price>34.95</price>
<review>
A very good discussion of
semi-structured database
</review>
</entry>

Peter Wood (BBK) XML Data Management 295/378

Combining Data Sources (2)

@ A FLWOR expression can bind one variable to the bibliography
data and another to the review data

@ In the following query we join data from the two files:

for $t in doc("books.xml")//title,
$e in doc("reviews.xml")//entry
where $t = $e/title
return
<review>
{ $t, $e/review }
</review>

Peter Wood (BBK) XML Data Management 296 /378

Combining Data Sources (3)

@ This returns the following answer:

<review>
<title>TCP/IP Illustrated</title>
<review>
One of the best books on TCP/IP.
</review>
</review>
<review>
<title>Advanced Programming in the ...</title>
<review>
A clear and detailed discussion of
</review>
</review>

Peter Wood (BBK) XML Data Management 297 /378

Inverting Hierarchies

@ XQuery can be used to do general transformations
@ In the example file, books are sorted by title

@ If we want to group books by publisher, we have to “pull up” the
publisher element (i.e., invert the hierarchy of the document)

@ The next slide shows a query to do this

Peter Wood (BBK) XML Data Management 298 /378

Inverting Hierarchies (2)

<listings> {
for $p in
distinct-values(doc("books.xml")//publisher)
order by $p
return
<result>
{ %}
{ for $b in doc("books.xml")//book
where $b/publisher = $p
order by $b/title
return $b/title
}
</result>

by

</listings>

Peter Wood (BBK) XML Data Management 299/378

Inverting Hierarchies (3)

Result:
<listings>
<result>Addison-Wesley
<title>Advanced Programming ...</title>
<title>TCP/IP Illustrated</title>
</result>
<result>Kluwer Academic Publishers
<title>The Economics of ...</title>
</result>

<result>Morgan Kaufmann Publishers
<title>Data on the Web</title>
</result>
</listings>

Peter Wood (BBK) XML Data Management 300/378

Quantifiers

@ Some queries need to determine whether

» at least one item in a sequence satisfies a condition
» every item in sequence satisfies a condition

@ This is done using quantifiers:

» some iS an existential quantifier
» every is a universal quantifier

Peter Wood (BBK) XML Data Management 301/378

Quantifiers (2)

@ The following query shows an existential quantifier

@ We are looking for a book where at least one of the authors has
the last name ‘Buneman’:

for $b in doc("books.xml")//book
where some $a in $b/author

satisfies ($a/last = ’Buneman’)
return $b/title

which returns:

<title>Data on the Web</title>

Peter Wood (BBK) XML Data Management 302/378

Quantifiers (3)

@ The following query shows a universal quantifier
@ We are looking for a book where all of the authors have the last
name ‘Stevens’:

for $b in doc("books.xml")//book
where every $a in $b/author

satisfies ($a/last = ’Stevens’)
return $b/title

which returns:

<title>TCP/IP Illustrated</title>
<title>Advanced Programming ...</title>
<title>The Economics of Technology ...</title>

Peter Wood (BBK) XML Data Management 303/378

Quantifiers (4)

@ A universal quantifier applied to an empty sequence always yields
true (there is no item violating the condition)

@ An existential quantifier applied to an empty sequence always
yields false (there is no item satisfying the condition)

Peter Wood (BBK) XML Data Management 304 /378

Conditional Expressions

@ XQuery’s conditional expressions (if - then - else) are used in
the same way as in other languages

@ In XQuery, both the then and the else clause are required

@ The empty sequence () can be used to specify that a clause
should return nothing

@ The following query returns all authors for books with up to two
authors and “et al.” for any remaining authors

Peter Wood (BBK) XML Data Management 305/378

Conditional Expressions (2)

for $b in doc("books.xml")//book
return
<book> { $b/title } {
for $a at $i in $b/author
where $i <= 2
return <author> { string($a/last), ", ",
string($a/first) }
</author>
b
{ if (count($b/author) > 2)
then <author> et al. </author>
else ()
b
</book>

Peter Wood (BBK) XML Data Management 306 /378

Conditional Expressions (3)
Result:

<book>
<title>TCP/IP Illustrated</title>
<author>Stevens, W.</author>
</book>
<book>
<title>Advanced Programming in ...</title>
<author>Stevens, W.</author>
</book>
<book>
<title>Data on the Web</title>
<author>Abiteboul, Serge</author>
<author>Buneman, Peter</author>
<author>et al. </author>
</book>
<book>
<title>The Economics of Technology ...</title>
</book>

Peter Wood (BBK) XML Data Management 307 /378

Summary

@ XQuery was designed to be compact and compositional

@ It is well-suited to XML-processing tasks like data integration and
data transformation

Peter Wood (BBK) XML Data Management 308/378

